

ARPA-E Zero-emission Iron & Steel Workshop September 1, 2021 Dr. Katie Daehn

The global steel system (2008)

The steel system: prioritizing strategies

Re-use, longer lifetimes, more intense use

Up to 30% of steel products could be re-used with minor refurbishment.

The lifespan of many end-use goods could be doubled, to halve new steel demand.

Using products more intensely could decrease demand by 30%.

Utilization of structural steel in buildings (2014). Moynihan and Allwood.

Use less metal by design

If all products were optimized, a **total steel savings of 25%** could be realized **(250Mt/yr)**.

The technical potential for reducing metal requirements through lightweight product design (2011). Carruth, Allwood, Moynihan.

Demand / supply strategies

Technologies for decarbonizing metal production

Materials innovations towards decarbonization of materials production, *in press* (2021). Daehn, Ravi, Gregory, Berlinger, Somjit, Olivetti.

Technologies for decarbonizing metal production

Increasing scrap availability

The future of steel: time to wake up (2016), Allwood

Technical barrier to increased recycling: copper contamination

Steel Grade	Interstitial Free	Deep Drawing Quality	Drawing	Commercial	Structural	Fine Wire	Rebar
Maximum Allowable Cu (wt %)	0.03	0.04	0.06	0.1	0.12	0.07	0.4

(Schrade et al., 2006)

Copper in the 2008 global steel system

Copper in the future global steel system

U.S.: ready for circularity?

The potential for material circularity and independence in the US steel sector (2020). Cooper et al.

2050 recycling scenario in U.S. steel system

The potential for material circularity and independence in the US steel sector (2020). Cooper et al.

So, what to do to better control copper?

Can copper be removed?

Process-independent thermodynamics: Yes, easily.

Liquid iron-copper system at 1550°C. Activities of copper and iron:

Copper and iron are not strongly interacting.

To overcome ΔG_f from 0.4wt% to 0.1wt%, amounts to ~1kWh/tonne.

Redrawn, original figure from (Zaitsev et al., 2001)

Many potential processes

Fit into steelmaking

Energy required to remove copper

Process specific material consumption

Simple melting could work...

Low carbon

Oxidized

Polished

Medium carbon

Oxidized

Polished

(Daehn et al., 2019)

Process development

Control the oxygen/carbon potential of the atmosphere during pre-heating for recovery of liquid copper

Scrap pre-heating conveyors increase productivity, save energy.

Or, control conditions to avoid hot shortness

My key points

- Same service could be delivered with less steel. 20% or more demand reduction from BAU is realistic.
- Steel recycling is certain to grow: may exceed primary production globally by mid-century.
- US steel system could be 'circular' this decade with appropriate measures.
 - Copper is a significant, but manageable constraint.

Acknowledgements

THE **USE | LESS** GROUP

LIVING WELL WHILE USING LESS

Olivetti Group

MIT | Dept. of Materials Science & Engineering

